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We numerically investigate the six-species predator-prey game in complex networks as well as in
d-dimensional regular hypercubic lattices with d=1,2 , . . . ,6. The food-web topology of the six species con-
tains two directed loops, each of which is composed of cyclically predating three species. As the mutation rate
is lowered below the well-defined phase transition point, the Z2 symmetry related with the interchange in the
two loops is spontaneously broken, and it has been known that the system develops the defensive alliance in
which three cyclically predating species defend each other against the invasion of other species. In the Watts-
Strogatz small-world network structure characterized by the rewiring probability �, the phase diagram shows
the reentrant behavior as � is varied, indicating a twofold role of the shortcuts. In d-dimensional regular
hypercubic lattices, the system also exhibits the reentrant phase transition as d is increased. We identify
universality class of the phase transition and discuss the proper mean-field limit of the system.
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I. INTRODUCTION

Recently, nonequilibrium dynamical systems as well as
standard equilibrium statistical mechanical model systems
have been intensively studied in the interaction structure of
complex networks �1�. Effects of shortcuts in the Watts-
Strogatz �WS� networks �2� on collective dynamic behaviors
have drawn much attention, revealing the close interplay be-
tween the structural and the dynamical properties. For net-
works of highly heterogeneous degree distributions such as
the Barabási-Albert �BA� scale-free network �3�, various as-
pects of collective behaviors have also been studied. Many
existing studies have been performed in the framework of the
phase transition and critical behavior �1�, and complex net-
work topology in many cases gives rise to the mean-field
universality class. It has been agreed that the shortcuts and
the hub vertices play important roles, increasing the effective
dimensionality of the WS and the BA networks, respectively,
yielding the critical behavior beyond upper critical dimen-
sion. In contrast, although various nonequilibrium models
such as game theoretic models, epidemic spread models, the
voter model, and the contact process have been actively stud-
ied in the complex network research area �1�, generic under-
standing of how the underlying network topology affects the
nonequilibrium phase transition is still lacking.

In population genetics, the so-called Lotka-Volterra model
has often been studied. In the point of view of statistical
physics, the neglect of the spatial density fluctuation in the
original Lotka-Volterra model corresponds to a mean-field
approximation, which cannot be justified in general since
every living organism inevitably lives in a finite-dimensional
space with a limited range of interactions. Accordingly,
population genetics models allowing spatial inhomogeneity
in species densities are desirable, which can be simply real-
ized by putting predators and preys on regular lattices in two

and three dimensions. Indeed, a cyclically interacting three-
species predator-prey model has been studied both experi-
mentally and numerically in Ref. �4� to uncover how the
biodiversity of the system can be maintained. Similar three-
species predator-prey model has also been investigated not in
a regular lattice structure but in the small-world interaction
structure �5�. More complicated predator-prey model has
been suggested �6–8�, with six or nine species interacting
with each other in a given food-web structure. In these stud-
ies it has been found that a subgroup of cyclically predating
species is spontaneously formed and species within the sub-
group protect the member species from attacks by other spe-
cies outside of the subgroup. The spontaneous formation of
such a defensive alliance is well captured by the statistical
mechanical approach, and the research focus has been put on
the existence and the nature of the phase transition of the
spontaneous formation of alliance as the mutation rate is
varied.

In the present work, we study the six-species predator-
prey game on various spatial interaction structures, in the
context of the phase transition and the critical behavior of a
nonequilibrium statistical physics model in complex net-
works. The food web under consideration �shown in Fig. 1�
has first been introduced in Ref. �7� and later studied in Ref.
�8�. Specifically, Szabó and Czárán �7� have shown that the
predator-prey game played on a two-dimensional �2D� regu-
lar lattice exhibits a phase transition of the 2D Ising univer-
sality as the mutation rate is changed, and also identified the
relevant order parameter detecting the Z2 symmetry breaking
of the defensive alliance of three cyclically predating species
�see Fig. 1�. In what follows, we will refer to this model as
the defensive alliance process �DAP�. In Ref. �8� the DAP
has been studied on the WS network structure and the effects
played by two different types of randomness, i.e., the tempo-
ral randomness induced by the mutation, and the structural
randomness introduced by the shortcuts in the WS network,
have been investigated. It has also been observed that the
DAP in the WS network shows a discontinuous phase tran-
sition at nonzero rewiring probability different from the con-*Corresponding author; beomjun@skku.edu

PHYSICAL REVIEW E 79, 066114 �2009�

1539-3755/2009/79�6�/066114�9� ©2009 The American Physical Society066114-1

http://dx.doi.org/10.1103/PhysRevE.79.066114


tinuous transition in 2D regular lattice �8�. We extend in this
work the study in Ref. �8� for the WS networks and construct
the complete phase diagram in the plane of the two different
randomness. To investigate the role of the structural inhomo-
geneity, the nature of the phase transition in the regular d-D
hypercubic lattices is also numerically studied. Since the
mean-field theory developed in Ref. �8� does not predict a
nontrivial critical point, we perform the cluster mean-field
�CMF� approximation for 2D model with the hope of better
understanding the nature of the transition in higher dimen-
sions.

The present paper is organized as follows: Sec. II presents
our results of the phase diagram for the DAP on the WS
networks as well as on the d-dimensional hypercubic lattices
with d=1,2 , . . . ,6, and discusses the reentrance transition
and the nature of the phase transition. In Sec. III, the cluster
mean-field theory with the cluster size 2 is developed for the
2D defensive alliance model. Finally, we summarize our re-
sults in Sec. IV.

II. DEFENSIVE ALLIANCE PROCESS

We start from the description of how the DAP is imple-
mented on general networks. The algorithm for the simula-
tions is as follows: initially at time t=0, six species are
equally distributed on vertices of the given network struc-
ture, with the density cs of the species s given by
cs�t=0�=1 /6 for all species �s=0,1 , . . . ,5�. At each time
step, one vertex is chosen at random and with the probability
P the species at the vertex is mutated to one of its predators.
Otherwise, with probability 1− P, the species at the vertex
plays the predator-prey game according to the rules depicted
in Fig. 1 with one of its randomly selected neighbors, and the
winner between the two occupies the loser’s vertex. If the
two species are neutral, i.e., if no arrow connects the two in
Fig. 1, the game will end in a draw and nothing happens. The
above procedure is repeated until the system approaches the
steady state.

Only for convenience, we define the parameter � as �8�

� = ln�1/P� , �1�

which is a decreasing function of P. As P becomes larger,
the temporal randomness becomes stronger. In other words,

� resembles an inverse temperature of equilibrium systems
and 1 /� can be interpreted as an effective temperature.

In order to detect the alliance breaking transition we mea-
sure the order parameter m �we also call it the magnetization
in analogy to the ferromagnetic Ising model� defined by �7,8�

m = ���c0 + c2 + c4� − �c1 + c3 + c5��� , �2�

where � . . . � is the time average after the steady state is
achieved. In this work, a sufficiently long equilibration time
�20 000 Monte Carlo steps� is taken. As P becomes
larger toward unity, all species are equally probable and
m�P→1�=0, while as P approaches zero, the spontaneous
development of defensive alliances gives us m�1 both for
the alliances I and II �see Fig. 1�, indicating the possibility of
a phase transition at nontrivial critical point �c.

In simulating DAP, we had a numerical difficulty espe-
cially when the mutation probability P is very small. In such
cases, the system often spends very long time before achiev-
ing the steady state, which we try to avoid through the use of
the simulated annealing technique in statistical physics by
lowering P slowly starting from a high value of P. It is also
observed that, if the system size is not sufficiently large, the
population becomes monomorphic and all vertices are occu-
pied by a single species before mutation acts. The rare mu-
tation can produce a predator of the species but the small
system at the low mutation probability will again be mono-
morphic unless a predator of the new born predator is gen-
erated by another mutation. The results presented below are
for sufficiently large systems where the polymorphic popu-
lation is attained.

A. DAP in the WS networks

We first construct WS networks for the DAP as follows
�2�: �i� one-dimensional �1D� and 2D regular lattices are first
built. For 1D each vertex has connections to its four neigh-
bors �nearest and next-nearest neighbors�, whereas for 2D we
assume only four nearest neighbor connections. �ii� With the
rewiring probability � one end of each local link is moved to
a randomly chosen other lattice point. Throughout this paper,
we call the resulting networks as WS1 and WS2, respectively,
in order to indicate the dimensionality 1 and 2 of initial
regular lattices from which the WS network is built as de-
scribed above. However, the subscripts 1 and 2 in WS1 and
WS2 should not be interpreted as the dimensionality of the
resulting small-world networks. The structure of the network
is varied with � from a regular network ��=0� to a fully
random network ��=1�.

Except for the case of �=0, corresponding to locally con-
nected 1D and 2D regular lattices, the phase transition is
found to be of the discontinuous nature as was already found
in Ref. �8�: when ���c, the order parameter m saturates
toward a finite value from below as the system size N is
increased, while at ���c, it decreases with N, which im-
plies that, in the thermodynamic limit of N→�, the order
parameter changes abruptly, signaling a discontinuous phase
transition �see Ref. �8� for more detailed discussion�. For
examples, m versus � for the WS1 network is shown in Fig.
2 for �= �a� 0.02 and �b� 0.3, with the estimation
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FIG. 1. Food web of the six-species predator-prey model. Each
species has two predators, two preys, and two noninteracting neu-
tral species. The two groups, called defensive alliances �alliance I
and II�, can be formed.
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�c=7.4�1� and �c=6.8�1�, respectively. We use this finite-
size behavior to locate �c as above, which is then used to
construct the full phase diagrams in Fig. 3.

It is very interesting that the phase diagrams in Fig. 3
exhibit reentrant behaviors as � is increased. This indicates
that the role of the random shortcuts is somehow twofold,
facilitating the defensive alliance at small � and then sup-
pressing the formation of the alliance at large �. In detail,
Fig. 3�c� displays m versus the rewiring probability � at
fixed �=6.0�1 /��0.17� for the WS2 network, following the
vertical arrow indicated in Fig. 3�b�. It is shown clearly that
as � increases the system starts from a disordered phase with
a very small m, enters an ordered phase, and then finally

leaves back to a disordered phase. We also check the finite-
size effect by comparing m for two different sizes
N=256�256 and 512�512 in Fig. 3�c�; the existence of
ordered phase in the intermediate region of � is shown to be
not a finite-size artifact. As � is increased from zero, more
shortcuts make the system more strongly correlated in the
sense that the change in the dynamic state of one vertex can
affect more vertices due to the small-world effect �2�. Con-
sequently, we believe that the first increase in m for small �
can be attributed to the strengthened correlation due to more
shortcuts. As � is increased further, the reduction in the path
lengths by more shortcuts becomes less influential, and more
shortcuts appear to introduce stronger spatial randomness,
which eventually makes the system less ordered.

In our simulations, we also notice that the behavior of m
upon the change in � is different for small � and large �:
when � is smaller than some value ������, the order pa-
rameter in the disordered phase m����c� approaches zero
as N is increased �see Fig. 2�a� for the WS1 network at
�=0.02�. In comparison, at ����, m����c� remains finite
as N becomes larger as one can see in Fig. 2�b� for �=0.3. It
appears that �� is close to the value of � at the end point of
the lob structure in the phase diagram, i.e., ���0.1 for the
WS1 network.

At �=0, WS networks do not possess any shortcuts and
thus correspond to locally connected regular lattices. Ob-
served phase transitions here at �=0 for both WS1 and WS2
networks are consistent with the simple expectation that, due
to the underlying Z2 symmetry of the two defensive alli-
ances, the DAP should belong to the same universality class
as the equilibrium Ising models in 1D and 2D regular lat-
tices, i.e., no phase transition at finite � for 1D and the phase
transition with the 2D Ising critical exponents at finite �c for
2D �7,8�. However, the existence of discontinuous phase
transition at nonzero � in WS1 and WS2 networks clearly
contradicts the above simple naive expectation: it has been
known that standard equilibrium models in statistical me-
chanics such as the Ising and the XY models in the WS
networks exhibit the mean-field type continuous phase tran-
sition, which has been attributed to the effective increase in
the spatial dimensionality due to the shortcuts �see, e.g., Ref.
�9��. This clearly gives a caveat that one needs to be careful
in generalizing conclusions drawn for equilibrium models to
nonequilibrium models.

The question we are now addressing is if the structural
inhomogeneity is responsible for the discontinuous transi-
tion. Since the mean-field theory developed in Ref. �8� can-
not predict a nontrivial critical point, the nature of the tran-
sition on the WS network cannot be understood from this
theory. Therefore, it is inevitable to study regular higher-
dimensional systems, especially beyond the upper critical di-
mensions of the Ising class. For completeness, we will study
the DAP in regular three-dimensional �3D�, four-dimensional
�4D�, and five-dimensional �5D� hypercubic lattices in the
next section, before studying six-dimensional �6D� system in
Sec. II C.

B. DAP in three-, four-, and five-dimensional regular lattices

The results in three-, four-, and five-dimensional regular
hypercubic lattices are given in Fig. 4 for hypercubic lattices

0

1

7 8

m

µ

(a)α=0.02(WS1)
N= 60000

120000
240000

0

1

6 7

m

µ

(b)α=0.3(WS1)

FIG. 2. �Color online� The order parameter m detecting the
alliance breaking transition versus the mutation parameter
�=ln�1 / P� with the mutation probability P is shown for the net-
work WS1, constructed from the 1D regular lattice via rewiring, at
the rewiring probability �a� �=0.02 and �b� �=0.3. As � is in-
creased, i.e., as the mutation probability P is decreased, a sponta-
neous formation of the defensive alliance occurs. The transition
point �c is roughly estimated from the comparison of different sizes
�N=60 000,120 000,240 000�: �c=7.4�0.1 for �a� �=0.02 and
�c=6.8�0.1 for �b� �=0.3.
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FIG. 3. �Color online� Phase diagrams for the DAP in the plane
of the mutation parameter 1 /��=1 / ln�1 / P�� with the mutation rate
P and the rewiring probability � for �a� WS1 and �b� WS2 networks.
As the rewiring probability � is changed, both �a� and �b� show
reentrant phase transitions. A discontinuous phase transition is ob-
served at any nonzero value of �. At �=0, WS1 and WS2 corre-
spond to the regular 1D and 2D lattices. �c� m versus � for the WS2

networks of the sizes N=256�256 and 512�512 with � set to 6.0,
following the vertical arrow in �b�. The reentrant behavior is again
seen very clearly.
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with the linear size L �the total number of individual species
N=Ld�. We use the system size L=16, 20, 24, 28, 32, and 48
for three dimensions, L=12, 14, 16, 18, and 20 for four di-
mensions, and L=8, 10, 12 and 14 for five dimensions, re-
spectively. During numerical simulations, we measure the
order parameter m in Eq. �2� and use the standard finite-size
scaling form of the magnetization:

m = L−�/	f��� − �c�L1/	� , �3�

where f�x� is a suitable scaling function with the scaling
variable x, and � and 	 are critical exponents for the order
parameter and the correlation length, respectively �10�. Fig-
ure 4 summarizes the numerical results for the phase transi-
tion in the 3D �for Figs. 4�a�–4�c��, 4D �for Figs. 4�d�–4�f��,
and 5D �for Figs. 4�g�–4�i�� regular hypercubic lattices.
Clearly exhibited is the vanishing of the order parameter at
low � �see Figs. 4�a�, 4�d�, and 4�g�, in which m versus � is
shown for three, four, and five dimensions�. The critical point
�c is determined from the unique crossing point as shown in
Figs. 4�b�, 4�e�, and 4�h� with L�/	m versus � plotted, and
then we present the collapse of the numerical data into
smooth curves in Figs. 4�c�, 4�f�, and 4�i� for three, four, and
five dimensions, respectively. In the above finite-size scaling
analysis, the critical point �c and the critical exponents are

determined: �c�5.5, ��0.33, 	�0.63 in three dimensions,
�c�5.25, ��0.5, 	�0.5 in four dimensions, and �c�6.7,
��0.5, 	�0.5 in five dimensions. Accordingly, we con-
clude that the DAP belongs to the same universality class as
for the equilibrium Ising model in d dimensions for d=1, 2,
3, 4, and 5 �10� �see Table I�.

C. DAP in six-dimensional regular lattice

We next examine the nature of the phase transition in 6D.
Due to the practical limitation of the computational re-
sources, we are limited to use the linear sizes L=7, 8, 9, 10,
and 11. Surprisingly, we find that the transition nature in 6D
is very different from the simple expectation of the equilib-
rium mean-field type and becomes discontinuous, similarly
to the WS1 and WS2 networks presented in Sec. II A. In Fig.
5�a�, the order parameter m is shown as a function of �,
exhibiting the transition around �c�7.4. Similarly to the
WS1 and WS2 networks, the change in m near �c becomes
more abrupt as L is increased, which indicates the discon-
tinuous nature of the phase transition. In Fig. 5�b�, we dis-
play the normalized histogram H�m� of the order parameter
m �m	�c0+c2+c4�− �c1+c2+c3� has been used to plot
H�m��, which clearly exhibits the signature of the discontinu-
ous phase transition, similarly to the WS network �8�. As
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FIG. 4. �Color online� Phase transitions in 3D �for �a�–�c��, 4D �for �d�–�f��, and 5D �for �g�–�i�� regular hypercubic lattices in terms of
the mutation parameter �. m versus �, L�/	m versus �, and L�/	m versus ��−�c�L1/	 are shown in �a�, �b�, �c� for three, �d�, �e�, �f� for four,
and �g�, �h�, �i� for five dimensions, respectively. After the determination of the critical point �c in �b�, �e�, and �h�, all data points collapse
to a single smooth curve by using the finite-size scaling form in Eq. �3�. In three dimensions, �c�5.5, ��0.33, and 	�0.63 are obtained
in accord with the 3D Ising universality class. In four dimensions, on the other hand, we obtain �c�5.25, ��	�0.5, which are the Ising
mean-field exponents. In five dimensions, our simulation results are again consistent with the mean-field exponents ��	�0.5 with
�c�6.7.
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another evidence of the non-mean-field nature of the transi-
tion in 6D, we also plot L�/	 as a function of � in the same
way as we did for three, four, and five dimensions in Figs.
4�b�, 4�e�, and 4�h� �not shown here�. With the mean-field
values �=	=1 /2, the curves do not make a unique crossing,
which again supports the non-mean-field nature of the phase
transition in 6D.

In Fig. 6, we summarize the results for the phase transi-
tions of the DAP in d-dimensional hypercubic regular lat-
tices. For d
5, the system shares the critical behavior with
the Ising model �see Table I�: no phase transition in one
dimension, and continuous phase transitions in two, three,
four, and five dimensions with critical exponents correspond-
ing to the Ising models in the same dimensions. Very inter-
estingly, as the dimensionality d becomes larger �d=6�, the
nature of the phase transition changes to a discontinuous one.
In a sharp contrast, the equilibrium Ising model in higher
dimensions than five belongs to the same mean-field univer-
sality class as in four dimension �up to logarithmic correc-
tions�, which defines the upper critical dimension of the Ising
model �dc=4�. On the other hand, the DAP displays very
different behavior: although the equilibrium mean-field uni-
versality is identified in four and five dimensions, it does not
lead to the conclusion that d�5 should exhibit the mean-
field universality. From our extensive simulations of the
DAP in the d-dimensional hypercubic regular lattices, we
propose that the system has three different critical dimen-
sions: �i� the usual lower critical dimension dlow=1 below
which the system is always disordered, �ii� the first upper
critical dimension dup

�1�=4 splitting the non-mean-field transi-
tion �d�dup

�1�� and the mean-field transition �ddup
�1��. Differ-

ent from the equilibrium Ising model, the DAP model does
not always show the mean-field nature for dimensions higher
than dup

�1� and there exists �iii� the second upper critical di-
mension dup

�2�=6 beyond which the DAP shows the discon-
tinuous phase transition. Unfortunately, we do not have any
rigorous reasoning for or against the above “conjecture.”

Although the nature of the phase transition cannot be de-
termined by the mean-field theory in Ref. �8�, it predicts that
the critical point 1 /�c in d dimensions should approach zero

from above as d→� because the globally coupled network is
equivalent to the infinite-dimensional systems. Consequently,
the vanishing value 1 /�c=0 in both limits of d→� and
d=1 makes us expect the reentrance behavior as d is in-
creased, which turns out to be true as shown in Fig. 6. This is
also very different from the equilibrium Ising model in
which the critical temperature monotonically increases with
the dimensionality.

III. CLUSTER MEAN-FIELD CALCULATION

From our numerical observation that the discontinuous
transition is not only due to the network property but it can
also arise from the increased dimensionality for hypercubic
regular lattices, one would expect that there will be a mean-

TABLE I. Universality classes of the DAP for d-dimensional
regular lattices, for globally coupled structure, and for the WS net-
work structure. The critical exponents � and 	 are included when
the phase transition is of a continuous nature.

Structure �c � 	 Universality class

1D regular � 1D Ising

2D regular �7,8� 6.5 1/8 1 2D Ising

3D regular 5.5 0.33 0.63 3D Ising

4D regular 5.25 1/2 1/2 Equilibrium mean-field

5D regular 6.7 1/2 1/2 Equilibrium mean-field

6D regular 7.4 Discontinuous

Global coupling �8� � No phase transition

WS1 and WS2
a Discontinuous

a�c for WS1 and WS2 depends on the rewiring probability � �see
Fig. 3�. When �=0, WS1 and WS2 are identical to 1D and 2D
regular lattices, respectively.

0.2

0.4

0.6

0.8

1

6 7 8 9 10

m

µ

(a) 6D

L=7
8
9

10
11

0

0.005

0.01

0.015

-1 -0.5 0 0.5 1

H
(m

)

m

(b) 6D, L=10 µ =7.4
7.5
7.6

0

0.01

0.02

-1 -0.5 0 0.5 1

H
(m

)

m

(c) 5D, L=8 µ =6.7
6.8
6.9
7.0

FIG. 5. �Color online� �a� m versus � in 6D. From the size
dependence of m, we roughly locate �c=7.4�2�. �b� Normalized
histogram H�m� of the magnetization m around the critical point for
the system size L=10. The peak position suddenly changes around
�c�L=10��7.5, indicating the discontinuous nature of the phase
transition �compare with the histogram in Ref. �8� for the discon-
tinuous transition in the WS network�. At large values of �, the
system often exhibits asymmetric H�m�. Only for convenience of
presentation, we symmetrized H�m� to make it an even function of
m. For comparison, we also show in �c� H�m� for the 5D regular
lattice of size L=8. Different from �b�, the peak positions in H�m�
changes smoothly, indicating the continuous nature of the phase
transition, in accord with the mean-field universality class revealed
in Fig. 4.
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field theory to predict the discontinuous transition. Along this
direction, we apply the CMF theory �11� to the two-
dimensional model. In this section, the lattice point in two-
dimensional square lattice is denoted by x with the decom-
position x=n1e1+n2e2, where ni’s are integers and ei’s are
unit vector along the direction i. The species at site x will be
denoted by sx.

The approximation scheme will be detailed in the
Appendix and here we just sketch the calculation
method. To begin with, we write down the exact evolution
equation for the marginal probability �see Appendix�
P4�sx ,sx+e1

,sx+e2
,sx+e1+e2

� from the master equation. Since
each s can take six different values �s=0,1 , . . . ,5� we have
to find out 64 equations. Thanks to the spatial �rotation and
inversion� and intra-alliance symmetries �P�
s��= P�
s+2��
with modulo 6�, the number of equations is greatly reduced
to 77, and the probability conservation condition reduces it
to 76. To get the steady state magnetization, we numerically
iterate those 76 equations until the magnetization does not
change significantly. The results are summarized in Fig. 7.
We then use the fitting function m�����1 /�c−1 /��� with
the mean-field critical exponent �=1 /2 and estimate the
critical point �c6.41, which should be compared to the
Monte Carlo simulation results �c6.50�4� in Table I and
Ref. �8�. Unlike the higher-dimensional systems with d6,
the CMF does not seem to predict the discontinuous transi-
tion although it gives us an accurate estimation of the critical
point for the 2D system. However, CMF does not provide a
clue as to why the models in higher dimensions above five as
well as in WS networks display the discontinuous transition.
It is quite difficult to believe that the CMF with a larger
cluster size than two can provide an explanation because the
actual transition in two dimensions is still continuous. One
way might be applying the CMF to six-dimensional systems
but it is simply too complicated to calculate.

IV. SUMMARY

We have investigated the alliance breaking phase transi-
tions of the six-species predator-prey model called the DAP
in the complex networks and also in the d-dimensional regu-
lar lattices. Identified nature of the phase transition is sum-
marized in Table I with critical exponents included when
available.

In the WS network, we have observed that the alliance
breaking phase transition is of a discontinuous nature. Inter-
esting reentrant phase transition in the WS network has been
observed as the rewiring probability � is increased at a fixed
mutation rate, implying the intricate role of the random
shortcuts on the phase transition.

Hypercubic regular lattice structures in d dimensions have
also been used as underlying spatial interaction structure of
the DAP. Observed is that the phase diagram in the plane of
the dimensionality and the mutation rate again displays an
interesting reentrant behavior �see Fig. 6�, which is in a strik-
ing contrast to the equilibrium Ising model. For the latter
model, the critical temperature is simply an increasing func-
tion of the dimensionality. We have identified the universal-
ity class for various dimensions �d=1,2 , . . . ,6�, and
d=1,2 , . . . ,5 exhibits the same critical behavior as for the
equilibrium Ising model. In contrast, as d is increased fur-
ther, discontinuous phase transition has been observed for
d=6. In the hope of finding a theory predicting the discon-
tinuous transition, we have applied the cluster mean-field
approximation for the two-dimensional systems but we only
find the continuous transition within this scheme. Still, the
reason why the higher-dimensional systems exhibit the dis-
continuous transition remains a mystery, which can be an
interesting theoretical question to be pursued further.
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FIG. 6. �Color online� Phase diagram for the DAP in
d-dimensional regular lattices with the food web given in Fig. 1 in
the plane of the mutation parameter 1 /� and d. Different symbols
denote different universality classes, and the lines are only guides to
eyes. For d=1, 2, 3, 4, and 5, the DAP belongs to the Ising univer-
sality class. As d becomes larger, the nature of phase transition is
changed to a discontinuous one. The point at d=� is included from
the result in Ref. �8� for the globally coupled case.
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FIG. 7. �Color online� Magnetization m as a function of
1 /� in the cluster mean-field approximation. In the fitting,
m���=A�1 /�c−1 /��1/2 is used with two fitting parameter A and
�c, resulting in �c6.41.
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APPENDIX: TWO-DIMENSIONAL CLUSTER MEAN-
FIELD THEORY

In this appendix, the equations and symmetry of the clus-
ter mean-field approximation with the cluster size two will

be detailed. We start by deriving the exact equation for the
marginal probability for the local configuration at four sites
x, x+e1, x+e2, and x+e1+e2 �x is the vector designating a
lattice point and ei’s are unit vectors along ith direction�.

The marginal probability P4 is defined by

P4�a,b,c,d� 	 P4�a b

c d
� 	 �� P�. . . ,sx = c,sx+e1

= d,sx+e2
= a,sx+e1+e2

= b, . . .� , �A1�

where the time dependence is implicitly assumed and the primed sum ���� run over all possible configurations with four
specified sites having the denoted species �0
a ,b ,c ,d
5�. We always assume the modulo-6 equivalence among species
indices, e.g., species 6 is equal to species 0, and so on. Due to the translational invariance, P4 does not depend on x if initial
condition does not have x dependence or if we are only interested in the stationary state. Hence we can safely omit the explicit
x dependence for the function P4.

The exact time evolution for P4 can be written as

d

dt
P4�a b

c d
� =

P

2 �
i=1

2 �P4�a + i b

c d
� + P4�a b + i

c d
� + P4� a b

c + i d
� + P4�a b

c d + i
�� − 4PP4�a b

c d
�

+
1 − P

2 ��i=1

2 �P5�a

a + i b

c d
� + P5�a a + i b

c d
� + P5� b

a b + i

c d
� + P5�a b + i b

c d
� + P5�a b

c d + i d
�

+ P5�a b

c d + i

d
� + P5� a b

c + i d

c
� + P5� a b

c c + i d
�� − �

i=4

5 �P5�a + i

a b

c d
� + P5�a + i a b

c d
� + P5� b + i

a b

c d
�

+ P5�a b b + i

c d
� + P5�a b

c d d + i
� + P5�a b

c d

d + i
� + P5� a b

c d

c + i
� + P5� a b

c + i c d
��

+ �
i=1

2 ���ab + �ac�P4�a + i b

c d
� + ��ab + �bd�P4�a b + i

c d
� + ��ac + �cd�P4� a b

c + i d
� + ��bd + �cd�P4�a b

c d + i
��

− �
i=1

5

�1 − �i3���a,b+i + �a,c+i + �b,d+i + �c,d+i�P4�a b

c d
�� . �A2�

In Eq. �A2�, we also introduced P5 which is the marginal
probability of the local configuration with five sites, taking
the form given as an argument. Due to the rotational and
mirror symmetries, one can easily see that

P5�a b

c d

e
� = P5�e c a

d b
� = P5� d b

e c a
� . �A3�

Hence we do not have to deal with eight different local con-
figurations independently while treating P5.

Due to the hierarchy appearing in Eq. �A2� �P5 is not
reducible in terms of P4�, it is not easy to solve it exactly,
which necessitates the use of the approximation scheme. To
this end, we treat the correlation within squares of linear size

2 completely and neglect the correlation beyond linear length
2. To be specific, we are using the approximation scheme
such that �11�

P5�a b

c d

e
� 

P4�a b

c d
�P3�c d

e
�

P2�c d �
, �A4�

where P2 and P3 are marginal probabilities defined similarly
to P4. The probability conservation makes it possible to find
P2 and P3 once we know P4 from the relations

P3�c d

e
� = �

i=0

5

P4�c d

e i
� , �A5�
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P2�c d � = �
i=0

5

P3�c d

i
� . �A6�

The above approximation scheme along with the symmetry
consideration given in Eq. �A3� lets Eq. �A2� close in the
sense that the number of equations are equal to that of vari-
ables. Since it is still infeasible to solve the approximate
equation analytically, we resort to the numerical solutions.

One may treat the 64=1296 equations directly without
considering the degeneracy of P4’s. However, symmetry
consideration reduces the number of equations we have to
deal with considerably. Now we will show that actually we
have only to treat 76 equations to get the full solution.

There are three symmetry operations, which are summa-
rized as follows:

P4�a b

c d
� = P4�b d

a c
� = P4�c a

d b
� , �A7�

P4�a b

c d
� = P4�b a

d c
� = P4�a c

b d
� , �A8�

P4�a b

c d
� = P4�a + 2 b + 2

c + 2 d + 2
� , �A9�

which are rotation ��90°�, mirror �against the diagonal
axes�, and intra-ally symmetric operations, respectively. To
find the degeneracy due to symmetry, let us first categorize
the local configurations according to the number of same
species among four sites. There are five such categories
which take the form 
0,0,0,0� �6�, 
0,0,0,1� �120�, 
0,0,1,1�
�90�, 
0,0,1,2� �720�, and 
0,1,2,3� �360�, where the species
numbers in curly brackets are just for the representative pur-
pose, the order of four elements in the curly braces are irrel-
evant, and the numbers in parentheses indicate the total num-
ber of local configurations of the corresponding categories
whose sum should be 64.

By considering the above symmetry operations, we
reduce the number of independent variables. When
a=b=c=d, the intra-ally symmetry reduces the independent
variables from six to two. When three of four species
are the same such as a=b=c�d, rotational symmetry
as well as the intra-ally one reduces the number of indepen-
dent variables. For example, P4�a ,a ,a ,d�= P4�a ,a ,d ,a�

= P4�a ,d ,a ,a�= P4�d ,a ,a ,a� by rotation and P4�a ,a ,a ,d�
= P4�a+2,a+2,a+2,d+2� by intra-ally transformations.
From this consideration, one can find that there are ten inde-
pendent variables out of 120 variables. In case a=b�c=d,
the symmetry consideration shows that �we omit P4 for con-
venience�

�a a

c c
� = �a c

a c
� = �c c

a a
� = �c a

c a
� ,

�a c

c a
� = �c a

a c
� , �A10�

which reduces the independent variables from 90 to 30. The
intra-ally symmetry once again reduces the number from 30
to 10.

The fourth case is a=b�c�d�a. The symmetry en-
forces the equivalence among configurations such that

�a a

c d
� = �a d

a c
� = �d c

a a
� = �c a

d a
� ,

�a c

d a
� = �c a

a d
� , �A11�

where exchanging c with d, which is equivalent to the mirror
transformation, also gives the equivalent configurations.
Hence Eq. �A11� combined with the intra-ally symmetry re-
duces the number from 720 to 40. The last category contains
all different species. This category has � 6

4 �=15 elements.
Since the rotation and the mirror symmetry operations al-
ways conserve the diagonal relations, each set has three dif-
ferent classes. Due to the intra-ally symmetry, however, only
15 configurations remain independent. To sum all indepen-
dent configurations, we find that there are 77�=2+10+10
+40+15� independent variables. Due to the probability con-
servation, one equation becomes reducible by other vari-
ables. So the final number of independent variables is 76.

One may solve the stationary state solution by setting
� /�t=0 in Eq. �A2�. For us, this turned out not to be easy
so we numerically integrated Eq. �A2� starting from the fully
magnetized state with intra-ally symmetry such that
P4�a ,b ,c ,d�=1 /3n with n as the number of members in al-
liance I among a ,b ,c ,d, and found the stationary state mag-
netization, which is summarized in Fig. 7.
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